Simulate the motions of the disks using each potential model for 1000 ps each at a density of 2.86E-6mol/m2 with an initial temperature of 300 K. Sketch the temperature versus time in each case.

2 Suppose you had a program to simulate the motions of N molecules moving in 2D. (Hint: The 2D applet in the DMD module at Etomica.org is an example of such a program when kept in “adiabatic” mode.)

(a) Simulate the motions of the disks using each potential model (ideal gas, hard disk, square well) for 1000 ps (1 picosecond=10–12 second) at a density of 2.86E-6mol/m2 with an initial temperature of 300K. Which would have the higher pressure, ideal gas or hard disks? Explain. Which would have the higher pressure, ideal gas or square well disks? Explain.

(b) Simulate the motions of the disks using each potential model for 1000 ps each at a density of 2.86E-6mol/m2 with an initial temperature of 300 K. Sketch the temperature versus time in each case. Explain your observations.

(f) Suppose you simulated the motions of the disks using each potential model for 1000 ps each at a density of 2.86E-6mol/m2 with an initial temperature of 300 K. How would the internal energy compare in each case? Explain.

find the cost of your paper

design suitable bearings to support the load for at least 5E8 cycles at 1 200 rpm using deepgroove ball bearings.

The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in row (a) of Table P11-1, and the corresponding diameter of shaft found in Problem 10-19,….

Find the minimum film thickness for a long bearing with the following data: 30-mm dia, 130 mm long, 0.0015 clearance ratio, 1 500 rpm, ISO VG 100 oil at 200°F, and supporting a load of 7 kN.

1.       A paper machine processes rolls of paper having a density of 984 kg/m3. The paper roll is 1.50-m OD X 22-cm ID X 3.23-m long and is on a simply supported, 22-cm OD, steel….

Find the minimum film thickness for a bearing with these data: 30-mm dia, 25 mm long, 0.0015 clearance ratio, 1 500 rpm, ON = 30, ISO VG 220 oil at 200°F.

1.       Problem 7-12 estimated the volume of adhesive wear to expect from a steel shaft of 40 mm dia rotating at 250 rpm for 10 years in a plain bronze….