Formulate a variation of regularized least-squares classification in which L1-loss is used instead of L2-loss.

1.       Show that the effect of the bias term can be accounted for by adding a constant amount to each entry of the n × n kernel similarity matrix when using kernels with linear models.

2.       Formulate a variation of regularized least-squares classification in which L1-loss is used instead of L2-loss. How would you expect each of these methods to behave in the presence of outliers? Which of these methods is more similar to SVMs with hinge loss? Discuss the challenges of using gradient-descent with this problem as compared to the regularized least-squares formulation.

find the cost of your paper

Suggest a modification of the binary search algorithm that emulates this strategy for a list of names.

1. Suppose that a list contains the values 20 44 48 55 62 66 74 88 93 99 at index positions 0 through 9. Trace the values of the variables….

Explain why insertion sort works well on partially sorted lists.

1. Which configuration of data in a list causes the smallest number of exchanges in a selection sort? Which configuration of data causes the largest number of exchanges? 2. Explain….

Draw a class diagram that shows the relationships among the classes in this new version of the system

Jack decides to rework the banking system, which already includes the classes BankView, Bank, SavingsAccount, and RestrictedSavingsAccount. He wants to add another class for checking accounts. He sees that savings….