Describe what steps you would take to make this image in real-time.

You are using a single transducer to examine a heart valve. Assume that in a given heart cycle the range of the valve is given by z(t) = 16 + 0.5e−t/τ u(t) cm where τ = 10 ms, u(t) is the unit step function, and the speed of sound is 1,540 m/s.

(a) Sketch z(t) over a couple of heart cycles (assume the heart rate is 1 Hz).

(b) Assume your transducer generates a pulse at t = 0 using a typical transmit waveform. Carefully sketch the A-mode signal (as a function of time) that you would observe on an oscilloscope.

(c) Now assume that you repeatedly fire your transducer every 1 ms. Sketch the M-mode image that would be generated, being careful to label the axes.

(d) Suppose you wanted to image the motion of this valve by making a Bmode image of it. Suppose it could be covered by 10 scan lines (given the beam size at a 16 cm range). Describe what steps you would take to make this image in real-time. Do you think it is possible?

find the cost of your paper

Explain why attenuation is not a big problem in PET.

Consider a 2-D object consisting of two triangle compartments, as shown in Figure P9.4. Suppose a solution containing a 511 KeV gamma ray emitting radionuclide with concentration f = 0.5….

Give the mean and the variance of the reconstructed image, mean[ˆ f(x, y)] and var[ˆ f(x, y)].

Ignoring the inverse square law and attenuation, an approximate reconstruction for SPECT imaging is given by where c˜() =  {||W()} and W() is a rectangular windowing filter that cuts off at = 0…..

Find the numerical responses in each to an event in crystal C(4, 6).

Suppose a PET detector comprises four square PMTs (arranged as a 2 by 2 matrix) and a single BGO crystal with slits made in such a way that it is….