## Calculate the fugacity (in MPa) of pure crystalline biphenyl at 310 K and 330 K and 0.1, 1, 10, 15, and 20 MPa.

One of the easiest ways to begin to explore fugacities in nonideal solutions is to model solubilities of crystalline solids dissolved in high pressure gases. In this case, the crystalline solids remain as a pure phase in equilibrium with a vapor mixture, and the fugacity of the “solid” component must be the same in the crystalline phase as in the vapor phase. Consider biphenyl dissolved in carbon dioxide, using kij = 0.100. The molar volume of crystalline biphenyl is 156 cm3/mol.

(a) Calculate the fugacity (in MPa) of pure crystalline biphenyl at 310 K and 330 K and 0.1, 1, 10, 15, and 20 MPa.

(b) Calculate and plot the biphenyl solubility for the isotherm over the pressure range. Compare the solubility to the ideal gas solubility of biphenyl where the Poynting correction is included, but the gas phase nonidealities are ignored.

### design suitable bearings to support the load for at least 5E8 cycles at 1 200 rpm using deepgroove ball bearings.

The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in row (a) of Table P11-1, and the corresponding diameter of shaft found in Problem 10-19,….

### Find the minimum film thickness for a long bearing with the following data: 30-mm dia, 130 mm long, 0.0015 clearance ratio, 1 500 rpm, ISO VG 100 oil at 200°F, and supporting a load of 7 kN.

1.       A paper machine processes rolls of paper having a density of 984 kg/m3. The paper roll is 1.50-m OD X 22-cm ID X 3.23-m long and is on a simply supported, 22-cm OD, steel….

### Find the minimum film thickness for a bearing with these data: 30-mm dia, 25 mm long, 0.0015 clearance ratio, 1 500 rpm, ON = 30, ISO VG 220 oil at 200°F.

1.       Problem 7-12 estimated the volume of adhesive wear to expect from a steel shaft of 40 mm dia rotating at 250 rpm for 10 years in a plain bronze….