## Calculate mole fractions and molar concentrations (mmol/L) of the free surfactant (in mM) and the micelles (in uM) of NG at T=285 K, where n = 58.

For nonylglucoside, NG, thermodynamic data for demicellization in water are presented in problem 17.26. Model the micelle reaction as nS ⇄  Mn where S is free surfactant and Mn is a micelle. Treat the solution as an ideal solution. Vary the total concentration of NG from 0 up to 20 mmol/L. Water is 55.5 mol/L. Calculate mole fractions and molar concentrations (mmol/L) of the free surfactant (in mM) and the micelles (in uM) of NG at T=285 K, where n = 58.  Plot curves for the concentrations. Identify the approximate CMC in mmol/ L. Hint to simplify calculations: The mol/L added is very small relative water molarity (55.5 mol/L). The density can be assumed to be constant.

### design suitable bearings to support the load for at least 5E8 cycles at 1 200 rpm using deepgroove ball bearings.

The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in row (a) of Table P11-1, and the corresponding diameter of shaft found in Problem 10-19,….

### Find the minimum film thickness for a long bearing with the following data: 30-mm dia, 130 mm long, 0.0015 clearance ratio, 1 500 rpm, ISO VG 100 oil at 200°F, and supporting a load of 7 kN.

1.       A paper machine processes rolls of paper having a density of 984 kg/m3. The paper roll is 1.50-m OD X 22-cm ID X 3.23-m long and is on a simply supported, 22-cm OD, steel….

### Find the minimum film thickness for a bearing with these data: 30-mm dia, 25 mm long, 0.0015 clearance ratio, 1 500 rpm, ON = 30, ISO VG 220 oil at 200°F.

1.       Problem 7-12 estimated the volume of adhesive wear to expect from a steel shaft of 40 mm dia rotating at 250 rpm for 10 years in a plain bronze….